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Abstract: 
Elastic Geomechanical properties are key elemental properties that must be adequately predicted for wellbore 

stability and effective hydraulic fracturing to be assured. Understanding these properties is key for planning 

drilling, production and reservoir management. This research analyses elastic Geomechanical properties 

predicted by seismic and well log data in “AJAH” field offshore Niger Delta using Artificial Neural Network. 

Analysis of well logs (5 wells) shows that the Poisson’s ratio (V), Shear modulus (G), Young’s modulus (E), 

Bulk modulus (K), Compressibility (β) and Unconfined compressional strength (UCS) range from 0.11- 0.47, 

0.15 – 8.5˟ 10
10

pa, 0.15 –14.3 ˟ 10
10

pa, 0.49 – 3.1 ˟ 10
10

pa, 0.32 – 2.0 ˟ 10
-8

pa
-1

 and 0.08 – 5.77 ˟ 10
7
pa 

respectively. A plot of Poisson’s ratio Vs Young’s modulus shows brittleness, indicating that hydraulic 

fracturing within this field would be very challenging. A well trained Artificial Neural Network (ANN) was used 

to predict elastic geomechanical properties in the vicinity of the wells and later was used to populate the 

estimated properties across the field. The ANN showed a correlation of 0.80205, 0.69493, 0.70674 and 0.67354 

for Poisson’s ratio, Shear modulus, Young’s modulus and Bulk modulus respectively, indicating a good match. 

The ANN revealed that Shear modulus, Young’s modulus and Bulk modulus generated by seismic is relatively 

greater than the one generated by well logs with a factor of ˟ 10
4
 while Poisson’s ratio is approximately the 

same. This research shows that in a data handicapped area (especially during exploration) a 3D seismic when 

constrain with well logs is very useful in predicting elastic geomechanical properties for planning/guiding new 

drills and for making inform reservoir management decisions. 
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I. Introduction 
Geomechanical (elastic and inelastic) properties are key elemental parameters that must be precisely 

predicted for wellbore stability to be assured. According to [1], the oil industry spends about 10billion dollars 

yearly on borehole instability issues. Elastic geomechanical property is the property of a rock that allows it to 

produce some form of resistance to deformation (shape or volume). When this elastic limit is exceeded, the 

material tends to break (deformation) and this deformation could lead to a lot of well instability issues. 

Significant amount drilling and completion budget is spent addressing wellbore issues/instability [2]. 

Geomechanical parameters includes: Pore pressure, Poisson’s ratio (V), Shear modulus (G), Young’s 

modulus (E), Bulk modulus (K), Compressibility (β) and Unconfined compressional strength (UCS), fracture 

gradient etc. and they are best estimated in the laboratory using static method (core information) but because 

cores are expensive, these parameters are now routinely estimated by the extraction of density (ρ), compressive 

(Vp) and shear (Vs) wave velocities from Well information,  or by the extraction of interval velocity from 

seismic or from drilling data (dynamic). There are several available empirical correlations that allows the 

estimation of desired geomechanical properties from the extracted primary properties. The elastic values 

obtained from both static and dynamic are seen to vary significantly owing to the effect of wave propagation 

(variation in time due to differences in frequency), scale effect or the effect of seismic data processing (as 

stacking results to reduction of velocity). 

Different geological materials have different mechanical strength and this mechanical strength varies 

from locality to locality even for similar lithologic unit. Reference [3] stated clearly that this variation could be 

due to variation of over burden weight, grain cementation strength, fluid pressure, rate of flow, fluid type, 
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pressure gradient or even stress caused by geological conditions (processes of sedimentation/deposition and 

environment of deposition). Changes in elastic rock properties lead to resultant changes in horizontal in-situ 

stresses [4]. In-situ stress and elastic geomechanical properties are therefore one of the major controls of fracture 

simulation behavior/production efficiency. Understanding of these geomechanical properties will aid in 

reducing uncertainties that relates to predicting wellbore fracture gradient, Formation in-situ pressure and 

general reservoir rock property (ductileness or brittleness). Furthermore, understanding these information from 

offset location will go a long way in ensuring optimum well placement, efficient hydraulic fracturing and 

effective completion design [5]. 

Seismic data contains important information about structure, stratigraphy, Petrophysical and 

geotechnical features of the subsurface and this information can be analyzed to yield important elastic 

mechanical properties of the subsurface (reservoir) rock. But first the seismic data must be calibrated with well 

logs and if possible, with core data to improve it prediction efficiency. Then the seismic will be inverted using 

appropriate inversion software. Well logs have proved very useful in estimating elastic geomechanical 

properties especially with the availability of different important empirical equation linking different elastic rock 

modulus with the lame’s parameter. Logs like Sonic, density, resistivity and gamma have found themselves 

useful in estimating elastic properties of rock.  

Artificial neural network is a set of high definition machine algorithms designed just like the human 

brain, to be able to understand pattern and perfectly mimic them [6]. Its main objective is to pick patterns and 

understand its relationship in other to cluster and classify properties based on the similarities picked. In the past, 

two major approaches have been used for this goal: classical statistics and knowledge from experts. However, 

the number of human experts is limited, and they may overlook important details, while classical statistical 

analysis does not give adequate answer when large amounts of complex data are available. The alternative is to 

use high definition machine language and artificial intelligence to analyze patterns, extract useful information in 

other to distribute properties [7]. Planning of drilling activities (mud weight design, in-situ stress state 

knowledge) is becoming very challenging especially in data handicapped areas (during exploration) due to the 

difficulty in accurate prediction of geomechanical properties. This research is therefore aimed at analyzing 

elastic geomechanical properties predicted by well logs and seismic using Artificial Neural Network and 

proceeds in distributing the predicted properties across the field, centered at trying to reduce uncertainty in 

predicting elastic geomechanical properties. 

 

 
Fig 1: Geomechanics throughout the life of a Field [8] 

 

II. Geology 
The word “Delta” represent a piece of environment close to the ocean, Niger delta is therefore a piece 

of environment situated at the Peak of the Guinea in the West Coast of Africa.  This Basin was formed in the 

late Jurassic as a result of the rifting of the South America and Africa plate [9]. Originally, the Cenozoic delta 

was formed at the intersection between the Benue trough and the South Atlantic Ocean and it represent the 

youngest sediment in the failed arm of the triple junction. The early created Delta was short of sediment as 

major sediment emplacement only started in the tertiary time, with sediment coming from weathered upland 

(continental sediment) through the Niger-Benue drainage basin [11]. Subsequently the Delta back stepped 

basinward toward the coast of Gulf of Guinea as presently seen today [11], [12]. The present-day Delta is said to 

be wave dominated with tidal influence implying that major sediment supply was as a result of wave action. 

Reference [10], explained that outbuilding of the Delta results to different successive growth called the depobelt 

and that this depobelt is younging basinward. Irrespective of the depobelts the tertiary Niger Delta is composed 

of three Formations; the under compacted, un-dewatered, over pressured Akata Formation, the paralic Agbada 
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and the Continental sand (Benin Formation). Extending to an area span of approximately seventy-five thousand 

square kilometers with average thickness pile of 11,000m [13], [14], [15]. 

The Akata Formation represent the oldest of the three Formations and it is located at the bottom of the 

delta, made up of marine shale with little sand and silt. The unit is of Paleocene to recent in age and it represent 

a thick body of under compacted and over pressured shale formed during the low stand system tract when 

terrigenous material was transported deep offshore [16], with thickness of about 7km [10]. The Agbada 

Formation consist of sand with some intercalation of shale bodies, this unit is of Eocene-recent in age and rests 

directly on the Akata shale. The sediments here show a transitional regime consisting of the lower deltaic plain 

and the coastal barrier with an average of about 50% sand units. This Formation is believed to be the reservoir 

hosting the rich hydrocarbon resources of the Niger Delta. Unit of this sand are interrupted by shale of varying 

thickness, researchers believe this shale to be the seal or cap rock helping in the entrapment of hydrocarbon 

[15], [17]. The structures found in the Agbada include the roll over anticline, collapse crest and growth fault 

which flattens with deeper burial [18]. The Benin Formation consists of massive continental sand deposit with 

little slit, lignite streams, shale and pockets of clay deposit. This unit is the believed to be of Eocene to recent in 

age and the sand body compose of large grain size that is moderately sorted. The sediment pile of this Formation 

is roughly 2000m thick and varies from locality to locality within the delta [13]. 

 

 
Fig 2: Stratigraphic succession of the study area [10] 

 

 
Fig 3: Map of the study area with well location 
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III. Methodology 
This research involves the integrating well logs with seismic data, for prediction of elastic geomechanical 

properties. For the logs empirical correlations were available for estimating elastic properties, whereas check 

shots were used to calibrate the sonic log. Sonic and density were then used for well-seismic tie in other to 

extract the wavelet which was in turn used for seismic inversion. The inverted acoustic impedance was use as 

base information for the generation of other rock properties. A well trained Artificial Neural Network was used 

for the prediction of elastic geomechanical properties taking information from seismic and well logs. The 

estimated rock properties include: Shear modulus, Bulk modulus, Poisson’s ratio, UCS, Young’s modulus and 

Compressibility modulus.  

 

Assumptions 

In the course of this research some assumption was made, and they include: 

1. Anisotropic effect is ignored  

2. Rock properties are assumed to be homogenous   

3. The five wells are enough for distributing elastic properties across the Field 

 

Estimating geomechanical elastic properties from well logs 

Estimation of geomechanical elastic properties of rock from well logs is the most direct, most 

convenient and most common dynamic method. Compressional wave velocity was extracted from the sonic log 

and localized Vp –Vs correlation used to compute the shear wave velocity [19].  Other empirical correlation was 

used for obtaining the different elastic properties [20], [21], [22], [23]. 
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G=Shear modulus, K= bulk modulus, V=Poisson’s ratio, E= Young’s modulus, Vs= secondary velocity, Vp= 

primary velocity,    = primary wave transit time                                          

 

Estimating rock elastic properties from seismic 

Estimation of elastic properties from seismic is done be inverting the seismic (seismic inversion) to 

produce and Acoustic impedance log which was used for the inversion of elastic rock properties. The post 

stacked seismic processed data was used. The elastic rock properties logs were generated using the relationship 

below: 

AI =           (10) 

SI =           (11) 

 

Creating and Training Artificial Neural Network 

Artificial neural network is a set of high definition machine algorithms designed just like the human 

brain, to be able to understand pattern and perfectly mimic them [24]. Its main objective is to pick patterns and 

understand its relationship in other to cluster and classify properties based on the similarities picked. For the 

purpose of this research well 01 -04 was used to train the Network, reason for choosing these wells was because 

they all fall on the same inline/cross line and could possibly share similar properties. The Artificial neural 

network training involves exposing the network to series of elastic properties around the wells using different 

attributes and different operator lengths. There about several attribute, so training involves selecting these 

attributes that has a relationship with the elastic properties of interest. What the network does is to put all the 

attributes together and find a way to mimic the property already estimated by the well logs. After a network for 
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an elastic property was created, a level of mimic known as match correlation was then observed. Several 

networks were trained for each elastic property. After creation of several networks, the network that gave the 

best fit was then adopted. 

 

Validation of trained Artificial Neural Network 

The adopted trained network was then validated using well X01, reason for this is because the well was 

not used for training and because it lies on a different inline and cross line. ANN validation is just a way of 

confirming the authentication of the trained network. This involves using the network to predict elastic 

properties at well X01 and then comparing the predicted property with the original properties of well X01.  

The validated network was then used to populate the generated elastic properties across the seismic volume. 

After which across plots of the seismic Vs well logs elastic properties were also done. 

 

IV. Results and Discussion 
Elastic Geomechanical properties from logs and Seismic  

The investigated interval from the well log ranges from 1000ft – 9400ft in the subsurface and it is made 

of alternation of sand shale sequence typical of Agbada Formation. The elastic rock properties were estimated 

using empirical correlations (equation 1-11). Table 1 shows the summary of the generated properties. As earlier 

stated, the ANN was constrained with the well logs and used to generate elastic geomechanical properties within 

the seismic volume. This was done by first inverting the seismic to produce an inverted acoustic/elastic 

impedance log using density and velocity information. The impedance logs were then used to generate elastic 

properties logs. The ANN then used several seismic attributes to predict the elastic rock properties in the 

vicinity of the wells (Cropped seismic volume) and was finally applied on the entire seismic volume. Figure 4. 

shows the generated elastic geomechanical properties within the seismic volume.  

 

Young’s Modulus and Poisson’s ratio 

Young modulus which indicates the ability of a material to withstand deformation ranges from 

5758Mpa – 48222mpa and 1487Mpa – 84557Mpa for shale and sand respectively. The smaller lower limit 

values of the sand suggest that the sand is loose, soft and unconsolidated, since the sand displaying this reading 

are shallow seated (less than 2000ft) they are suggestive of Benin sand. Generally, sands are more elastic than 

shales (due to mineralogy and composition) this explains why sand values for Young’s modulus are higher than 

shale. Young’s Modulus for seismic ranges from 4.85*10
7 

-1.43*10
8 

Mpa as against well derived Young’s 

Modulus (5.758*10
3 
– 4.822*10

4 
Mpa) with an average factor of *10

4
. This implies that in this field it is possible 

to convert Young’s modulus derived from seismic to well log by dividing with a factor of *10
4
, this would be 

very handy especially in guiding new drills away from the vicinity of the previous wells.  

 

Table 1: Summary of rock elastic properties estimated from well logs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WELLS PARAMETER SHALE SAND 

WELL 01 V 0.11 – 0.31 0.12 - 0.45 

G (Mpa) 3856 - 20782 834 – 18319 

E (Mpa) 10146 - 48222 2341 -41060 

K (Mpa) 3381 - 14506 809 – 13685 

USC (Mpa) 11.8 – 28.3 1.2 – 44.7 

WELL 02 V 0.21 – 0.36 0.23 – 0.38 

E (Mpa) 6240 - 18215 4825 – 31351 

G(Mpa) 2646 - 8145 1745 – 13549 

K (Mpa) 2400 - 18884 1607 – 31351 

UCS (Mpa) 8.2 – 19.1 5.4 – 44.3 

WELL 03 V (Mpa) 0.21 – 0.29 0.23 – 0.38 

E (Mpa) 11787 -20978 6212 – 13823 

G (Mpa) 4550 - 8929 2228 – 5491 

K (Mpa) 3928 - 6991 2039 – 5667 

UCS(Mpa) 13.1 - 19 5.8 – 24 

WELL 04 V  0.2 – 0.39 0.25 – 0.39 

E (Mpa) 5758 - 26866 1774 – 29629 

G (Mpa) 2068 – 11379 1774 – 12790 

K (Mpa) 1918 - 8954 1654 – 9875 

UCS (Mpa) 7.4 – 2.2 4.19 – 37 

WELL XO1 V 0.12 – 0.35 0.14 – 0.47 

E (Mpa) 7498 - 43199 1487 – 84557 

G (Mpa) 2780 – 19262 506 – 39646 

K (Mpa) 2499 – 143 98 494 – 28184 

UCS (Mpa) 9.8 – 27.4  0.8 – 56.7 
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Figure 5 shows a cross plot of Young’s Modulus of well 01 versus seismic and well X01 versus 

seismic at in-line 3138. It is worthy to note that cross plots were done for the five wells (Well 01-X01) but only 

two wells were displayed here (one well used for training of the network and another used for validating the 

network). The average correlation for the five wells versus seismic is 0.73509 indicating a good match (see table 

3). 

Poisson’s ratio is the ratio of transverse strain to axial strain. Poisson’s ratio is an important mechanical 

property that is used to predict the geomechanical behavior during drilling or enhancement activities. Well bore 

stability, sand production and hydraulic fracturing are strongly affected by strength of the rock which can be 

determined by the Poisson’s ratio [25]. Reservoir volume changes due to production, injection or subsequent 

uplift or subsidence can be very substantial hence a good understanding of the Poisson’s ratio will help in 

handling this effect [26]. The estimated Poisson’s ratio from well logs ranges from 0.11 – 0.39 for shale and 

0.12 – 0.47 for sand. It can be observed that the Poisson’s ratio generally decreases with depth within similar 

lithology, since compaction generally increases with depth (for an undisturbed Formations). 

The estimated Poisson’s ratio from seismic, ranges from 0.33 – 0.456 with the lower boundary 

significantly different from that of the well logs. Explanation for this is that the seismic carries out averaging of 

attribute to arrive at the estimated Poisson’s. Only few well intervals showed Poisson’s ratio that are within 

0.11- 0.3 as majority of the estimated Poisson’s ratio lies between 0.3- 0.45. Therefore, an average value, let say 

for every 200m square volume is likely to be above 0.3.  

 

Table 2: Summary of the correlation of elastic properties of Seismic Vs Well log 
properties  Well 01 Well 02 Well 03 Well 04 Well X01 Ave correlation  

Poisson’s ratio 0.89689 0.81923 0.79831 0.64080 0.85504 0.80205 

Shear modulus 0.65581 0.82665 0.62456 0.55421 0.81342 0.69493 

Bulk modulus 0.72563 0.78682 0.64352 0.58125 0.79652 0.70674 

Young’s modulus 0.93131 0.81775 0.34630 0.64080 0.93930 0.73509 

 

 
Fig 4: Seismic generated elastic properties on in-line 3138 

 

Shear and Bulk Modulus 

The shear modulus (G) is the ratio of the shear stress to the shear strain. It explains the stiffness of a 

rock. The well logs estimated shear modulus ranges from 2.07*10
4
 – 8.15*10

4
Mpa and 0.51*10

4
Mpa – 

39.65*10
4
Mpa for sand and shale respectively, indicating that the sands are stiffer than the shales. The bulk 

modulus defines how a material will undergo a volume strain when subjected to pressure and varies from 

5.1*10
3
Mpa – 2.818*10

4
Mpa and is relatively higher in sands. The seismic predicted property varies from 
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8.65*10
7
–1.93*10

8 
Mpa for shear modulus and 2.17*10

7 
- 6.83*10

7
Mpa for bulk modulus. Reason for the 

variation of estimated elastic modulus (shear and bulk modulus) could be due to variation in frequency as well 

logs allows much higher frequencies which means much lower velocity, acoustic impedance and lower elastic 

modulus. 

 

         
Fig 5: Young’s Modulus of log Vs Seismic  Fig 6: Possion’s ratio of Log Vs Seismic 

 

Compressibility and Unconfined compressibility strength 

The compressibility (β) ranges from 0.4 – 2.0 *10
-8

 Mpa
-1

 and UCS ranges from 0.8 – 57Mpa. Low 

compressibility, shear modulus and UCS indicates that deeper seated shales are more stiff, rigid, ductile and are 

susceptible to compressive failure, but this also means that they would serve as a good barrier to hydraulic 

stimulator. They, therefore, can easily from a barrier to fracture growth under hydraulic fracturing unlike the 

brittle sand that will fracture easily. 

 

   
       Fig 7: Shear Modulus for Log vs Seismic                       Fig 8: Bulk Modulus for Log vs Seismic 
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Fig 9: Poisson ratio Vs Young Modulus for well 01-X01 

 

Brittleness and Ductility (Poisson’s Vs Young’s modulus) 
The plot of Poisson’s ratio Vs Young’s Modulus is an indicator of the brittleness or ductility of any 

earth material. High Poisson’s ratio with low Young’s modulus is an indication of brittleness while High 

Poisson’s ratio with high Young’s modulus is an indication of ductility. In the study area both the seismic and 

well log analysis showed a trend of increasing Poisson’s ratio with decreasing Young’s Modulus indicative of 

brittleness. The implication of this is that the encountered Formation will easily fracture when subjected to 

pressure (hydraulic fracturing). In other words, hydraulic fracturing will be very challenging in this area, as 

reservoir unit can extend the frack instead of acting as a simulator barrier.  

 

 
Fig10: Cross plot of Poisson’s Vs Young’s Modulus for Inline 3181 and in Cropped Seismic Volume  

 

V. Conclusion 
The investigated interval from the well log ranges from 1000ft – 9400ft in the subsurface and it is made 

of alternation of sand-shale sequence typical of Agbada Formation. The estimated Poisson’s ratio ranges from 

0.18 – 0.47 which it typical of the Niger Delta. The Field is believed to be brittle especially at sand interval and 

reservoir hydraulic fracturing would prove very challenging but deep-seated shales could act as a simulation 

barrier since they show evidence of ductility. The Formation is generally loose, soft and unconsolidated. The 

ANN proved to be very useful in predicting elastic geomechanical properties with an average correlation of 

0.734703 for predicted and actual (from wells). Estimated Poisson’s ratio is seen to be the most accurately 

predicted property with a correlation of 0.80205. Within the studied field a conversion factor of *10
4 
can be used 
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to convert well logs elastic properties to seismic properties and this would be very useful in planning new drills 

especially in the vicinity away from the previous wells. This research therefore, demonstrates that ANN can be 

used for accurate prediction of elastic Geomechanical properties where drilling or core information is 

unavailable. 
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